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CONSPECTUS: Incorporation of chemically modified nucleotide scaffolds into nucleic acids
to form assemblies rich in function is an innovative area with great promise for
nanotechnology and biomedical and material science applications. The intrinsic
biorecognition potential of nucleic acids combined with advanced properties of the locked
nucleic acids (LNAs) provide opportunities to develop new nanomaterials and devices like
sensors, aptamers, and machines. In this Account, we describe recent research on preparation
and investigation of the properties of LNA/DNA hybrids containing functionalized 2′-amino-
LNA nucleotides.
By application of different chemical reactions, modification of 2′-amino-LNA scaffolds can be
efficiently performed in high yields and with various tags, postsynthetically or during the
automated oligonucleotide synthesis. The choice of a synthetic method for scaffolding along
2′-amino-LNA mainly depends on the chemical nature of the modification, its price, its
availability, and applications of the product. One of the most useful applications of the
product LNA/DNA scaffolds containing 2′-amino-LNA is to detect complementary DNA
and RNA targets. Examples of these applications include sensing of clinically important single-nucleotide polymorphisms (SNPs)
and imaging of nucleic acids in vitro, in cell culture, and in vivo. According to our studies, 2′-amino-LNA scaffolds are efficient
within diagnostic probes for DNA and RNA targets and as therapeutics, whereas both 2′-amino- and isomeric 2′-α-L-amino-LNA
scaffolds have promising properties for stabilization and detection of DNA nanostructures. Attachment of fluorescent groups to
the 2′-amino group results in very high fluorescent quantum yields of the duplexes and remarkable sensitivity of the fluorescence
signal to target binding. Notably, fluorescent LNA/DNA probes bind nucleic acid targets with advantages of high affinity and
specificity. Thus, molecular motion of nanodevices and programmable self-assembly of chemically modified LNA/DNA
nanomaterials can be followed by bright fluorescence signaling from the functionalized LNA units. Another appealing aspect of
the amino-LNA scaffolds is specific targeting of nucleic acids and proteins for therapeutic applications. 2′-Amino-LNA/DNA
conjugates containing peptide and polyaromatic hydrocarbon (PAH) groups are promising in this context as well as for advanced
imaging and diagnostic purposes in vivo. For imaging applications, photostability of fluorescence dyes is of crucial importance.
Chemically stable and photostable fluorescent PAH molecules attached to 2′-amino functionality of the 2′-amino-LNA are
potent for in vitro and in vivo imaging of DNA and RNA targets.
We believe that rational evolution of the biopolymers of Nature may solve the major challenges of the future material science and
biomedicine. However, this requires strong scientific progress and efficient interdisciplinary research. Examples of this Account
demonstrate that among other synthetic biopolymers, synthetic nucleic acids containing functionalized 2′-amino-LNA scaffolds
offer great opportunities for material science, diagnostics, and medicine of the future.

1. INTRODUCTION
Nucleic acids are key biopolymers in all living organisms, which
provide genetic inheritance, evolution, and adaptation of species
to the environment. Even small alterations in nucleic acid
sequences, such as single nucleotide polymorphisms (SNPs) or
deletion of one or two nucleotides, might induce genetic
predispositions, frank disorders, and diverse drug responses.1 As
discovered by Watson and Crick in 1953, the principle of
complementarity plays a central role in nucleic acid structure and
function.2 Presently, multiple approaches have been developed
for closer insight into structure and function of natural nucleic
acids and to create materials and tools inspired by and resembling
natural nucleic acids. Automated chemical synthesis of short
nucleic acids, that is, oligonucleotides, complementary to a
certain genomic sequence, together with design and preparation

of self-assembling structures and devices from nucleic acid
building blocks, are among these approaches.3,4

Chemical modification of nucleic acids is a rapidly developing
research area, which provides the possibility to create advanced
tools for diagnostics,3,5 therapy,6 and material science.4,7 By
incorporation of synthetic analogues, the intrinsically high
biorecognition potential of nucleic acids can be improved with
respect to both affinity and specificity of target bindng.5

Furthermore, stability to degradation by enzymes and cellular
uptake of therapeutic and bioanalytical oligonucleotides can be
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increased using modified nucleic acid scaffolds.6 Finally,
additional function can be brought into nucleic acids, for
example, by incorporation of sensor molecules such as
fluorescent dyes,8 spin labels,9 and radioisotopes.10

Nucleic acid scaffolding can be performed by introducing
modifications into the sugar or nucleobase parts of nucleotides or
the phosphate backbone.11 Multiple studies have shown that the
conformation of the furanose ring plays a vital role in overall
structure and in biophysical properties of the natural ribose-
based nucleic acids.12 A plethora of synthetic DNA and RNA
scaffolds containing modifications in the sugar part have been
prepared and investigated.11,13 Among other modifications,
locked nucleic acids (LNAs) have shown appealing properties
such as improved affinity and specificity of binding to DNA/
RNA targets14 together with high enzymatic stability (Figure
1).15,16 The reason for these properties is the bicyclic skeleton,
which “locks” the furanose ring of LNA nucleotides into an RNA-
mimicking N-type conformation.17

Shortly after the synthesis of LNA, 2′-amino-LNA analogues
were developed in order to further incorporate functional tags
into oligonucleotides.18 As demonstrated below, the amino
group of 2′-amino-LNA is a good choice for advanced
modification by various chemical reactions at different stages of
nucleic acids synthesis.16,19−21

In this Account, we present an overview of synthetic routes
leading to modified 2′-amino-LNA scaffolds, as well as examples

of their application in modern diagnostics, nanobiotechnology,
and development of personalized therapy of human diseases.

2. SYNTHESIS OF 2′-AMINO-LNA AND ITS
DERIVATIVES

A robust and straightforward synthetic route to a nucleic acid
analogue and its derivatives makes the modified scaffold easily
available and enables its exploration and use. Therefore,
optimization of a quite long synthetic route would increase
application of 2′-amino- and isomeric 2′-α-L-amino-LNA. The
first synthesis of 2′-amino- and 2′-methylamino-locked nucleic
acids (2′-amino-LNAs) was reported by Singh et al. in 1998.18

The initial synthetic route included more than 20 steps resulting
in an overall yield of ∼15% starting from 4-C-acetoxymethyl-1,2-
di-O-acetyl furanose.18,22 Nevertheless, thermal stability of
duplexes with complementary RNA andDNA strands containing
2′-amino- and 2′-methylamino-LNA nucleotides were remark-
ably high (ΔTm + 3.0 °C toward DNA and +6.6 °C toward RNA
per one 2′-amino-LNA modification).18 Therefore, despite a
rather complicated synthesis, the attractive biophysical proper-
ties inspired further functionalization of 2′-amino-LNA and a
broad range of studies of their derivatives as described below.
Stimulated by the first exciting data (vide infra) on modified 2′-
amino-LNA scaffolds, an improved synthetic route to key 2′-
amino-LNA intermediates was developed by Rosenbohm et al. in
2003.22 The authors reported that the optimal route is
convergent with the synthesis of LNA monomers (Figure 1)23

via a common intermediate obtained by a mild intramolecular
cyclocondensation reaction. This new synthetic strategy
included 13 steps starting from 3-O-benzyl-4-C-hydroxymeth-
yl-1,2-O-isopropylidene-α-D-erythro-pentofuranose with an im-
proved overall yield of 2′-amino-LNA nucleosides up to 37%.22

Next, in 2006, Ravn et al. developed a synthetic route via a
transnucleosidation that enabled the preparation of oligonucleo-
tides incorporating 2′-amino-LNA with all four natural bases,24

whereas a large scale synthesis of 2′-amino-LNA thymine and 5-
methylcytosine nucleosides (up to 50 g) was reported byMadsen
et al. in 2012 (Scheme 1).25 In the latter work, thymidine

Figure 1. Chemical structures of DNA, LNA, and 2′-amino-LNA
nucleotides.

Scheme 1. General Strategy of Large-Scale Synthesis of 2′-Amino-LNA Thymine and 5-Methylcytosine Nucleosides Reported by
Madsen et al.25a

aDMT = 4,4′-dimethoxytrityl.
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intermediate 2 was synthesized on a multigram scale (50 g, 70
nmol) from starting sugar 1 in 15 steps and overall yield of 73%,
with only five purification steps. Next, the key thymine
nucleoside 3 was obtained from 2 in a single step in 96% yield,
whereas the key 5-methylcytosine compound 4 was obtained
from 2 in two steps in 58% yield (Scheme 1). This highly efficient
large scale route allows convenient and high-yielding syntheses of
thymine and 5-methylcytosine LNA derivatives, which can be
further functionalized with a functional group at the N2′-
position, converted into phosphoramidite reagents (in two
divergent steps following standard methods), and incorporated
into synthetic oligonucleotide analogues.25

Functionalization of 2′-amino-LNA can be performed either
prior to automated oligonucleotide synthesis26,27 or after
completion of the desired oligonucleotide sequence (post-
synthetically)28,29 and by a wide variety of chemical reactions. In
general, the choice of a synthetic method for scaffolding along 2′-
amino-LNA mainly depends on the chemical nature of the
modification, its price, its availability, its sensitivity to solid-phase
synthesis or deprotection conditions, applications of the product,
and amount of the product needed. Diverse N-acylated26 and N-
alkylated26,27 derivatives of 2′-amino-LNA can be obtained by
amide coupling28 and reductive ammination29 reactions,
respectively (Scheme 2A). These methods give modified 2′-
amino-LNA nucleosides such as 5 and 6 in high yields, which
afterward can be converted into phosphoramidite reagents 7 and
8 for solid-phase DNA synthesis of the desired modified
oligonucleotides (Scheme 2A). Incorporation of bulky 2′-
amino-LNA derivatives result in lowered coupling yields for
the corresponding phosphoramidites, which can be improved up
to 85−92% by applyingmicrowave conditions and hand coupling

procedures.26,27 Alternatively, 2′-amino-LNAs can be function-
alized after their incorporation into oligonucleotides by a
coupling reaction or by click chemistry, for example, by the
copper catalyzed azide−alkyne cycloaddition (CuAAC) reaction
(Scheme 2B).30,31 In this case, a much lower amount of the tag is
needed for the reaction, which is economically a more
convenient approach, for example, for small scale conjugation
of rather expensive peptides and fluorophores.30−32 An efficient
demonstration of a postsynthetic amide coupling approach is the
stepwise attachment of diverse amino acids to the 2′-nitrogen of
2′-amino-LNA monomers.30 In order to perform CuAAC click
chemistry on 2′-amino-LNA/DNA scaffolds, 2′-N-alkyne
monomer 13 was prepared by coupling of a protected 2′-
amino-LNA nucleoside with pent-4-ynoic acid.31 The resulting
nucleoside was converted into phosphoramidite reagent 12,
which was used in solid-phase synthesis of 21mer oligonucleo-
tides with single to triple incorporations of modified 2′-amino-
LNA scaffolds. Remarkably, click chemistry of the product
oligonucleotides rapidly provided a library of fluorescent and
peptide-labeled LNA/DNA conjugates in 62−88% yield without
the need for additional purification steps (except for rapid gel
filtration).31,32

A novel challenging approach to synthesis of modified nucleic
acid scaffolds is the use of enzymes, for example, polymerases.
Recently, the triphosphate derivative of 2′-amino-LNA thymi-
dine (2′-amino-LNA-TTP) was synthesized and found to be a
good substrate for Phusion HF DNA polymerase, allowing
enzymatic synthesis of modified DNA strands encoded by
unmodified template strands.33 To complement this, 2′-amino-
LNA-T phosphoramidites were incorporated into oligodeoxyr-
ibonucleotides, which were used as templates for enzymatic

Scheme 2. Representative Strategies for Functionalization of a 2′-Amino-LNA Scaffolda

aReagents and conditions: (A) (i) (giving product 5) (1) ethyl trifluoroacetate, DMAP, CH3OH; (2) sat. NH3 in MeOH, (3) pyren-1-ylcarbonyl
chloride, Na2CO3, MeOH, 0 °C, 50% for three steps; (giving product 6) pyrene-1-carbaldehyde, AcOH, NaCNBH3, MeOH, 94%; (ii) (giving
products 7 and 8) NC(CH2)2OP(Cl)N(i-Pr)2, (i-Pr)2NEt, CH2Cl2 (7, 76%; 8, 57%); (ii) (giving product 12) NC(CH2)2OP(N(i-Pr)2)2,
diisopropylammonium tetrazolide, DCM, 73%; (iii) automated DNA synthesis, 95-99%; (B) (i) pent-4-ynoic acid, O-(7-azabenzotriazol-1-yl)-
N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU), N,N-diisopropylethylamine (DIPEA), DMF, 71%; (iv) R1N3, CuAAC click
chemistry, 60−89%. DMT = 4,4′-dimethoxytrityl, R1 = peptide, fluorescent dye.31,32.
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synthesis of unmodified DNA using different polymerases
including KOD, KOD XL, or Phusion polymerase. It was
reported that 2′-amino-LNA-T in the template and 2′-amino-
LNA-TTP as a substrate both decreased reaction rate and yield
compared with unmodified DNA, especially for sequences with
multiple 2′-amino-LNA-T nucleotides.33 We speculate that in
the future the problem of low yield for incorporation of modified
LNA nucleotides in such reactions can be solved using novel
synthetic polymerases.34

3. DETECTION OF NUCLEIC ACIDS USING
2′-AMINO-LNA SCAFFOLDS

Generally, a suitable method for nucleic acid diagnostics is
accurate, is adaptable for both homogeneous and solid-phase
reaction formats, and provides a robust and easily interpretable
signal. To create such a method, one must develop
oligonucleotide probes that provide an intense signal (output)
while efficiently discriminating between complementary and
mismatched targets. These properties have recently been
reported for fluorescent derivatives of 2′-amino-LNAs contain-
ing polyaromatic hydrocarbon (PAH) dyes.31,35,36 Because of the
expanded π-electronic structure of these dyes, fluorescence of
these molecules is sensitive to even minor changes in their
microenvironment by shifts of absorption or emission bands or
by the appearance of additional signals resulting in the formation
of excimers and exciplexes.37 However, a relatively long excited
state lifetime (>10 ns) is needed in order to monitor dynamic
fluorescence effects within biopolymers. Therefore, pyrene and
its derivatives display highest sensitivity of fluorescence to
molecular environment and polarity.
In our research, we have shown that short fluorescent LNA/

DNA probes containing PAHs such as pyrene,38

(phenylethynyl)pyrenes,35 perylene,36 and coronene39 represent
a class of biosensors with advantages of high specificity and
sensitivity in the context of sensing SNPs. Umemoto et al. thus
applied pyrene excimer-forming short LNA/DNA probes for
SNP sensing in a model system.38 We further developed this
system and applied excimer based design for genotyping of the
HIV-1 protease encoding gene fragment (HIV-pol; Figure 2).35

With novel (phenylethynyl)pyrene dyes with improved photo-
physical characterisctics compared with the parent pyrene (i.e.,
up to 20-fold higher fluorescence quantum yields and 50−120
nm longer excitation and emission wavelengths), the detection
limit was below 5 nM, even in the presence of one or two
polymorphic mutations located five to seven nucleotides away
from the drug-resistance causing SNP. Furthermore, this system
was efficiently applied for genotyping of clinical samples
amplified by PCR, and the results were similar to those obtained
by sequencing experiments performed as controls. Finally, FRET
between pyrene and perylene was also useful for nucleotide-
specific genotyping of the HIV PR gene using 2′-amino-LNA
scaffolds within short LNA/DNA probes.36 We believe that the
extraordinarily high specificity of LNA/DNA probes and bright
fluorescence response to a particular mismatched nucleotide
when applying 2′-amino-LNA scaffolds can lead to a unique
platform for development of next-generation enzyme-free
diagnostics of SNPs.
The hybridization-induced modulation of fluorescence

intensity is an exciting property of multiply labeled PAH−
LNA/DNA probes making them useful for nucleic acid
detection.40,41 This is accompanied by high binding affinity
and selectivity to both DNA and RNA targets and by efficient
fluorescence sensing of single-nucleotide mismatches, also

observed for derivatives of isomeric 2′-amino-α-L-LNA.42,43
However, in case of the latter, the better results were obtained for
targeting DNA rather than RNA, due to efficient intercalation of
the tags attached to the 2′-amino functionality of the 2′-amino-α-
L-LNA into the double-stranded DNA. In case of 2′-amino-LNA,
efficient biosensing properties are achieved for both DNA and
RNA targets. For example, upon duplex formation of
appropriately designed 2′-N-(pyren-1-yl)- and 2′-N-(perylene-
3-yl)carbonyl-2′-amino-LNA probes and complementary DNA
or RNA, intensive fluorescence emission with quantum yields
between 0.11 and 0.99 is obtained.40,41 Molecular modeling
studies suggest that the constrained bicyclic ribose
(dioxabicyclo[2.2.1]heptane) skeleton and the amide linkage
of PAH-modified 2′-amino-LNA monomers fix the orientation
of the dye in the minor groove of a nucleic acid duplex.
Interactions between the dye and nucleobases or media, which
typically lead to quenching of fluorescence, are thereby reduced
or even prevented. Duplexes between multiply modified probes
and DNA or RNA complements exhibit additive increases in
fluorescence intensity, while the fluorescence of single stranded
probes becomes increasingly quenched. Thus, up to a 69-fold
increase in fluorescence intensity (measured at λem 383 nm) was
observed for pyrene-2′-amino-LNA monomer 9 upon hybrid-
ization to DNA/RNA. The emission from duplexes of multiply

Figure 2. Example design of PAH−LNA/DNA probes for fluorimetric
genotyping assays.35 HIV-pol = HIV-1 gene fragment encoding
protease. (A) Chemical structures and design rules for the PAH−
LNA/DNA probes. LNAs are marked with uppercase L. (B)
Fluorescence spectra of single-stranded dual-probe mix and their
complexes with complementary (mutant) and mismatched (wild-type)
DNA targets; λex = 325 nm, 0.5 μM solutions in a medium salt buffer
([Na]+ 110 mM, pH 7.2).
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modified probes containing the bright perylene dye (monomer
17, Chart 1) and DNA or RNA complements at concentrations

down to less than 500 nM can easily be seen by the naked eye
using standard illumination intensities, although the fluorescence
increase for perylene upon hybridization is less than that for
pyrene (∼8-fold vs ∼69-fold, respectively).40,41 Less efficient
quenching of fluorescence by nucleobases for perylene compared
with pyrene is caused by shorter excited state lifetime of the
former (∼2−3 ns vs >10 ns, respectively).37 Monomer 17
furthermore provides excellent binding affinity and mismatch
discrimination of the probes when binding to complementary
DNA or RNA targets. Finally, using perylene−LNA/DNA
probes, we were able to detect the target mRNA in cell culture
with advantages of high specificity and an excitation wavelength
of perylene that completely eliminated cell autofluorescence (λex
425 nm).41

4. 2′-AMINO-LNA SCAFFOLDS IN DRUG DISCOVERY
Synthetic oligonucleotide analogues have enormous therapeutic
potential.44 To date, modulation of gene expression has mainly
been performed by three main approaches: (1) antisense
oligonucleotides, which by complementarity to a given mRNA
can inhibit translation through binding the target mRNA, (2)
small interfering RNAs (siRNAs), which are double-stranded
RNA molecules of which one strand bind RNA molecules
thereby modulating gene expression, and (3) triplex-forming
oligonucleotides (TFOs), which can bind specific genomic
sequences of double-stranded DNA and thereby interfere with
transcription.
Unlike LNA, 2′-amino-LNA scaffolds have not been

extensively studied in antisense and siRNA technologies so
far,45−51 but 2′-amino-LNAs were found to be useful in TFOs52
and as a constituent of nucleic acid aptamers (vide inf ra).53

Interestingly, nonmodified 2′-amino-LNA monomers proved to
be less stabilizing to triplexes than LNA monomers when
incorporated into a triplex-forming third strand.52 However,
N2′-functionalization of 2′-amino-LNA monomers with a glycyl
unit induced the formation of exceptionally stable triplexes (ΔTm
up to +14.0 °C compared with nonmodified TFOs), although
without any data on the mismatch discrimination ability of these
TFOs.
Developing aptamers toward a specific target molecule is

another appealing approach for therapeutic nucleic acids.
Hernandez et al. reported significantly improved affinity against
the avidin protein upon incorporation of LNA and 2′-amino-
LNA monomers into an avidin-binding DNA aptamer.53 In this
work, the kinetic profile of a selected modified aptamer was
obtained by surface plasmon resonance experiments and

compared with the profile of the parent unmodified DNA
aptamer. This report established 2′-amino LNAs as novel
monomers in aptamers which in addition to direct therapeutic
action may find applications as a carrier unit, for example, for
small-molecule drug entities.53 Moreover, “clickable” 2′-amino-
LNA scaffolds efficiently bind and sense nucleic acids and
antibodies against double-stranded DNA (dsDNA-mAb32 and
dsDNA-mAb33),31 while simultaneously improving stability of
the probes in nondiluted human serum.32 We believe that our
method of using affinity-enhancing 2′-amino-LNA will contrib-
ute to further development of advanced enzymatically stable
peptide−oligonucleotide conjugates as useful tools addressing
diverse biological and biomedical goals in vitro and in vivo.

5. APPLICATIONS OF 2′-AMINO-LNA SCAFFOLDS IN
NUCLEIC ACID NANOTECHNOLOGY

DNA and RNA nanotechnology is an exciting research field,
which focuses on design, synthesis, and applications of novel
functional devices and materials with nanometer precision.
Successful examples of nanometer-scale DNA and RNA
engineering include origami,54−56 DNA walkers,57−59 and large
arrays for immobilization of proteins.60 However, as outlined by
Wengel in 2003, modified nucleic acid scaffolds such as LNA and
2′-amino-LNA allow one to increase resolution of the nucleic
acid design down to ångström-scale.61 Thus, current efforts
within nucleic acid ångström-scale engineering focus on
generating rigid and stable low nanometer-sized structures
carrying functionalities with predictable spatial positioning. By
encoded self-assembly of complementary nucleic acid strands,
this allows building functional nucleic acid architectures aimed at
applications within the biological and material sciences.62

The first examples of incorporating LNA into nano-objects
include several model interstrand communication systems,
which were called “zipper” complexes.27 The main principle of
the “zipper” approach is synthesis of complementary DNA
strands containing modifications in certain positions with respect
to each other upon forming the double-stranded complex
(Figure 2A). In doing this, the aforementioned polyaromatic
hydrocarbon (PAH) dyes were found to be very potent. In
addition to stabilization of duplexes by π−π interactions between
PAHs, PAH−LNA scaffolds provided a hybridization-induced
bright fluorescence signal with characteristic wavelengths of
excitation and emission, for example, ∼340/490 nm, ∼345/515
nm, and ∼325/500 nm for the pyrene,27 (phenylethynyl)-
pyrene63,64 excimer, and pyrene−perylene Förster resonance
energy transfer (FRET) systems,65 respectively. Typically,
attachment to nucleic acids results in the quenching of
fluorescence of a dye in both single strands and duplexes due
to the presence of multiple quenchers of emission. Such an effect
was previously observed for pyrene, perylene, xanthene, and
cyanine dyes attached to various nucleic acid scaffolds.37

However, as mentioned above, attachment to a rigid LNA-type
skeleton prevents structural fluctuations of the dye within a
double stranded complex and thus reduces quenching of
fluorescence. Owing to increased binding affinity and selectivity
of oligonucleotides, isomeric 2′-amino-α-L-LNAs are also
promising nucleotide analogues for scaffolding along double-
stranded DNA nanostructures.42,43 Resulting quantum yields
and brightness values of the PAH−LNA/DNA scaffolds are very
high compared with other nucleic acid analogues (like 2′-O-(1-
pyrenylmethyl)uridine,66 and “clickable” derivatives of 2′-
propargylated uridine containing phenoxazinium,67 coumarin,67

styryl,68 and commercially available xanthene and cyanine

Chart 1. Chemical Structure of Monomer 17
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dyes69). Simultaneously, binding affinity and selectivity by the
PAH−LNA containing probes are superior to higher compared
with, for example, carbamates70 or readily available C2′- and C5-
modifications68−72 As mentioned above, fluorescence of PAH−
LNA units is also strongly affected in the presence of a single-
nucleotide mismatch. Such a combination of biosensing and
biophysical properties was not previously reported, for example,

for base-modified71−73 and intercalating non-nucleosidic scaf-
folds.74−76

Recently, we applied bright PAH−LNA/DNA scaffolds in
construction of a novel fluorescent LNA/DNA machine called a
nanocrawler, which reversibly moves along a directionally polar
complementary road controlled by affinity-enhancing locked
nucleic acid (LNA) monomers 9, 10, and 18 and by additional

Figure 3. (A) Design of the labeled nanocrawler and complementary road, LNA/DNA brake and speed strands (CNC1, R1, B1−B4, and S1−S4), and
expected fluorescence sensing of binding CNC1 to R1.77 L = LNA monomers. (B) Chemical structures of modified monomers. (C) Demonstration of
following nanocrawler by color change (left to right): medium salt buffer (blank solution, 1), stations 1−4 (2−5). The picture was recorded in a medium
salt phosphate buffer using 2.0 μM concentration of each strand and excitation wavelength of 365 nm (regular laboratory UV lamp). Reproduced from
ref 77. Copyright 2013 American Chemical Society.
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regulatory strands (Scheme 2; Figures 3 and 4).77 PAH dyes
attached to 2′-amino-LNA monomers were incorporated at four
stations of the system, enabling simple detection of the position
of the nanocrawler via a step-specific color signal (Figure 3A).
The sensing was provided by highly sensitive, chemically stable,
and photostable PAH−LNA interstrand communication sys-

tems, including pyrene excimer formation and pyrene−perylene
interstrand FRET (Figures 3 and 4). The nanocrawler selectively

and reversibly moved along the complementary road, followed

by a bright and consistent fluorescence fingerprint for up to 10

cycles without any loss of signal.

Figure 4. (A) Annealing scheme for the reversible movement of the nanocrawler (cNC1) along the road R1. (B) Fluorescent fingerprint of the
movement of the nanocrawler from station 1 to station 4 at 390, 450, and 500 nm (blue, green, and yellow bars, respectively). Reproduced from ref 77.
Copyright 2013 American Chemical Society.
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As a last aspect, the possibility to reversibly cross-link nucleic
acid strands by a simple procedure is very desirable for nucleic
acid nanotechnology. Using a 2′-amino-LNA scaffold, Pasternak
et al. developed an efficient anthracene-functionalized cross-
linking system.78 Two DNA strands with the novel 2′-N-
anthracenylmethyl-2′-amino-LNA monomers could be effec-
tively cross-linked by photoligation at 366 nm in various types of
DNA structures. Moreover, successful application of three
differently functionalized 2′-amino-LNA monomers in self-
assembled higher ordered structures for simultaneous cross-
linking andmonitoring of assembly formation was demonstrated.

6. CONCLUSIONS AND OUTLOOK
Chemical modification of nucleic acids is beginning to make a
significant impact on development of novel functional tools for
molecular diagnostics, therapy, and material science. High
chemical and enzymatic stability, selectivity of target binding,
and robust synthetic approaches are among the many challenges
affiliated with use of nucleic acid analogues in living systems,
biotechnology, and engineering. Incorporated into oligonucleo-
tides, locked nucleic acids (LNAs) allow construction of efficient
tools addressing these challenges. The additional advantage of 2′-
amino-LNA scaffolds is a freedom to choose a molecular moiety
for incorporation into nucleic acids while maintaining the potent
biophysical properties of LNA. To realize such constructs,
diverse chemical approaches can be used, including but not
limited to amide coupling, reductive amination, and click
chemistry. With regard to efficient bioconjugation methods,
copper catalyzed azide−alkyne cycloaddition (CuAAC) has
proven efficient for scaffolding along 2′-amino-LNA. The
additional advantages of CuAAC click chemistry include high
yields, simple purification techniques, and the possibility of
performing modification in aqueous solution in vitro and even in
vivo.79 Recent advances in nucleic acid nanotechnology have
enabled researchers to build large DNA and RNA structures and
devices but with limited examples of utilizing modified nucleic
acid scaffolds.54−59 We believe that 2′-amino-LNAs and their
diverse derivatives will bring additional functional dimensions
into the field of nucleic acid nano-objects and nanodevices and
will allow direct spectroscopic imaging of their actions and effects
in vitro and in vivo.
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